1,542 research outputs found

    Tolerance of banana for fusarium wilt is associated with early H2O2 accumulation in the roots

    Get PDF
    Banana plants derived from a tissue culture process possess a high rate of random variations that were widely used as popular cultivars due to the new desired traits. In this study, two near-isogenic lines, one susceptible (parental Williams-8818) and the other resistant (somaclonal variation progeny Williams-8818-1 from Williams-8818) to Fusarium oxysporum f. sp. Cubense (Foc4), were inoculated with race 4 of F. oxysporum (Fox). Production of O2ā€¢āˆ’ , H2O2 and MDA, as well as changes in enzyme activities, and transcript levels of SOD and CAT in root extracts were monitored every 24 h over 4 days. The histochemical location of H2O2 was also detected. In the resistant iso-line, the accumulation of O2ā€¢āˆ’ and H2O2, and the activation of SOD occurred in the first 24 h, but activation of CAT reached its maximum only after 48 h. All changes were generally lower in the susceptible iso-line when compared to the resistant iso-line. SOD transcripts were further up-regulated until 72 h in the resistant iso-line, but not in the susceptible iso-line. CAT expression was not affected in any of the two iso-lines. This suggests that expressions of the two key genes in the antioxidant system are less suitable indicators for Foc resistance in banana. In contrast, the first ā€œoxidative burstā€ is a better indicator for different susceptibility of banana to Foc.Key words: Banana, Fusarium oxysporum, catalase, reactive oxygen species, somaclonal variation, disease resistance

    Synthesis and characterization of folate-poly(ethylene glycol) chitosan graft-polyethylenimine as a non-viral carrier for tumor-targeted gene delivery

    Get PDF
    The use of chitosan and chitosan derivatives for gene delivery is limited due to the low transfection efficiency and difficulty in transfecting into a variety of cell types, including some cancer cells overexpressing folate receptor (FRs). In order to solve this problem, folate (FA) and poly(ethylene glycol) (PEG) was conjugated to chitosan-graft-polyethylenimine (CHI-g-PEI) to enhance water-solubility and the transfection efficiency. In the present study, a cell specific targeting molecule FA was linked on PEG and then grafted the FA-PEG onto CHI-g-PEI. The FA-PEG-grafted CHI-g-PEI (FA-PEG-CHI-g-PEI) effectively condensed the plasmid DNA (pDNA) into nanoparticles with positive surface charge under the suitable nitrogen/phosphorus (N/P) ratio. In vitro, transfection efficiency of the FA-PEG-CHI-g-PEI /pDNA complex in 293T cells and LoVo cells (FRs over-expressing cell lines) increased with increasing N/P ratio under N/P = 15 and was more than 50%, but no significant difference in human lung carcinoma cells (A549) cells (FRs deficient cell lines). Importantly, in vivo luciferase expression showed that the efficiency of FA-PEG-CHI-g-PEI -mediated transfection (50 Ī¼g luciferase plasmid (pLuc), N/P ratio = 15) was comparable to that of adenovirus-mediated luciferase transduction (1 Ɨ 109 pfu) in melanomabearing mice. It was concluded that FA-PEG-CHI-g-PEI, which has improved transfection efficiency and FRs specificity in vitro and in vivo, may be useful in gene therapy.Key words: Folate poly(ethylene glycol)-chitosan-grafted-polyethylenimine (FA-PEG-CHI-g-PEI), gene transfection, non-virus vector, in vitro, in viv

    Effect of the filament discharge current on the microstructure and performance of plasma-enhanced magnetron sputtered TiN coatings

    Get PDF
    Ā© 2017 Elsevier B.V. Titanium nitride (TiN) coatings were synthesized by plasma-enhanced magnetron sputtering (PEMS) on 316L austenitic stainless steel and YG8 cemented carbide substrates. The plasma enhancement process involved the use of hot filaments as additional sources of electrons for the magnetron discharge. The structural, morphology, crystallinity, thickness, abrasion resistance and adhesion of the TiN coatings, as well as the nanohardness and Young's modulus were investigated at different filament discharge currents. The results showed that with increasing discharge current, the deposition rate of the coating decreased, the structural morphology of the TiN coatings became finer and denser and the columnar grain size decreased. The critical load for failure in scratch adhesion tests of the coatings on stainless steel and YG8 substrates were over 22 N and 141 N, respectively. The nanohardness and Young's modulus both improved significantly from 8 GPa and 200 GPa to 38 GPa and 500 GPa, respectively, after the discharge current increased from 6 A up to 12 A. The adhesion and the abrasion resistance of the coating on cemented carbide increased, and those on stainless steel decreased, with increasing filament discharge current. It was found that matching the Young's modulus of the coating to that of the substrate was important to improve the adhesion and abrasion resistance of the coating. The results demonstrate that TiN coatings can be prepared by PEMS at appropriate filament discharge currents, resulting in coatings with uniform thickness, dense structure and high hardness, abrasion resistance and adhesion

    Control of electronic conduction at an oxide heterointerface using surface polar adsorbates

    Full text link
    The transfer of electrons between a solid surface and adsorbed atomic or molecular species is fundamental in natural and synthetic processes, being at the heart of most catalytic reactions and many sensors. In special cases, metallic conduction can be induced at the surface of, for example, Si-terminated SiC1, or mixed-terminated ZnO2, in the presence of a hydrogen adlayer. Generally, only the surface atoms are significantly affected by adsorbates. However, remotely changing electronic states far from the adsorbed layer is possible if these states are electrostatically coupled to the surface. Here we show that the surface adsorption of common solvents such as acetone, ethanol, and water can induce a large change (factor of three) in the conductivity at the buried interface between SrTiO3 substrates and LaAlO3 thin films3-8. This phenomenon is observed only for polar solvents. Our result provides experimental evidence that adsorbates at the LaAlO3 surface induce accumulation of electrons at the LaAlO3/SrTiO3 interface, suggesting a general polarization-facilitated electronic transfer mechanism, which can be used for sensor applications.Comment: 14 pages, 4 figure

    Inactivation Kinetics of beta-N-Acetyl-D-glucosaminidase from Green Crab (Scylla serrata) in Dioxane Solution

    Get PDF
    Natural Science Foundation of China [40576066, 30500102]; Program for Innovative Research Team in Science and Technology in Fujian Province Universitybeta-N-Acetyl-D-glucosaminidase (NAGase, EC.3.2.1.52), which catalyzes the cleavage of N-acetylglucosamine polymers, is a composition of chitinase and cooperates with endochitinase and exo-chitinase to disintegrate chitin into N-acetylglucosamine (NAG). In this investigation, A NAGase from green crab (Scylla serrata) was purified and the effects of dioxane on the enzyme activity for the hydrolysis of p-Nitrophenyl-N-acetyl-beta-D-glucosaminide (pNP-NAG) were studied. The results show that appropriate concentrations of dioxane can lead to reversible inactivation of the enzyme and the inactivation is classified as mixed type. The value of IC(50), the dioxane (inactivator) concentration leading to 50% activity lost, is estimated to be 0.68%. The kinetics of inactivation of NAGase in the appropriate concentrations of dioxane solution has been studied using the kinetic method of the substrate reaction. The rate constants of inactivation have been determined. The results showed that k(+0) is much larger than k'(+0), indicating the free enzyme molecule is more fragile than the enzyme-substrate complex in the dioxane solution. It is suggested that the presence of the substrate offers marked protection of this enzyme against inactivation by dioxane

    Fast synthesis of platinum nanopetals and nanospheres for highly-sensitive non-enzymatic detection of glucose and selective sensing of ions

    Get PDF
    Novel methods to obtain Pt nanostructured electrodes have raised particular interest due to their high performance in electrochemistry. Several nanostructuration methods proposed in the literature use costly and bulky equipment or are time-consuming due to the numerous steps they involve. Here, Pt nanostructures were produced for the first time by one-step template-free electrodeposition on Pt bare electrodes. The change in size and shape of the nanostructures is proven to be dependent on the deposition parameters and on the ratio between sulphuric acid and chloride-complexes (i.e., hexachloroplatinate or tetrachloroplatinate). To further improve the electrochemical properties of electrodes, depositions of Pt nanostructures on previously synthesised Pt nanostructures are also performed. The electroactive surface areas exhibit a two order of magnitude improvement when Pt nanostructures with the smallest size are used. All the biosensors based on Pt nanostructures and immobilised glucose oxidase display higher sensitivity as compared to bare Pt electrodes. Pt nanostructures retained an excellent electrocatalytic activity towards the direct oxidation of glucose. Finally, the nanodeposits were proven to be an excellent solid contact for ion measurements, significantly improving the time-stability of the potential. The use of these new nanostructured coatings in electrochemical sensors opens new perspectives for multipanel monitoring of human metabolism

    Atomic-scale combination of germanium-zinc nanofibers for structural and electrochemical evolution

    Get PDF
    Alloys are recently receiving considerable attention in the community of rechargeable batteries as possible alternatives to carbonaceous negative electrodes; however, challenges remain for the practical utilization of these materials. Herein, we report the synthesis of germanium-zinc alloy nanofibers through electrospinning and a subsequent calcination step. Evidenced by in situ transmission electron microscopy and electrochemical impedance spectroscopy characterizations, this one-dimensional design possesses unique structures. Both germanium and zinc atoms are homogenously distributed allowing for outstanding electronic conductivity and high available capacity for lithium storage. The as-prepared materials present high rate capability (capacity of similar to 50% at 20 C compared to that at 0.2 C-rate) and cycle retention (73% at 3.0 C-rate) with a retaining capacity of 546 mAh g(-1) even after 1000 cycles. When assembled in a full cell, high energy density can be maintained during 400 cycles, which indicates that the current material has the potential to be used in a large-scale energy storage system

    Counter-current chromatography for the separation of terpenoids: A comprehensive review with respect to the solvent systems employed

    Get PDF
    Copyright @ 2014 The Authors.This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Natural products extracts are commonly highly complex mixtures of active compounds and consequently their purification becomes a particularly challenging task. The development of a purification protocol to extract a single active component from the many hundreds that are often present in the mixture is something that can take months or even years to achieve, thus it is important for the natural product chemist to have, at their disposal, a broad range of diverse purification techniques. Counter-current chromatography (CCC) is one such separation technique utilising two immiscible phases, one as the stationary phase (retained in a spinning coil by centrifugal forces) and the second as the mobile phase. The method benefits from a number of advantages when compared with the more traditional liquid-solid separation methods, such as no irreversible adsorption, total recovery of the injected sample, minimal tailing of peaks, low risk of sample denaturation, the ability to accept particulates, and a low solvent consumption. The selection of an appropriate two-phase solvent system is critical to the running of CCC since this is both the mobile and the stationary phase of the system. However, this is also by far the most time consuming aspect of the technique and the one that most inhibits its general take-up. In recent years, numerous natural product purifications have been published using CCC from almost every country across the globe. Many of these papers are devoted to terpenoids-one of the most diverse groups. Naturally occurring terpenoids provide opportunities to discover new drugs but many of them are available at very low levels in nature and a huge number of them still remain unexplored. The collective knowledge on performing successful CCC separations of terpenoids has been gathered and reviewed by the authors, in order to create a comprehensive document that will be of great assistance in performing future purifications. Ā© 2014 The Author(s)

    Intrathecal lidocaine pretreatment attenuates immediate neuropathic pain by modulating Nav1.3 expression and decreasing spinal microglial activation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intrathecal lidocaine reverses tactile allodynia after nerve injury, but whether neuropathic pain is attenuated by intrathecal lidocaine pretreatment is uncertain.</p> <p>Methods</p> <p>Sixty six adult male Sprague-Dawley rats were divided into three treatment groups: (1) sham (Group S), which underwent removal of the L<sub>6 </sub>transverse process; (2) ligated (Group L), which underwent left L<sub>5 </sub>spinal nerve ligation (SNL); and (3) pretreated (Group P), which underwent L<sub>5 </sub>SNL and was pretreated with intrathecal 2% lidocaine (50 Ī¼l). Neuropathic pain was assessed based on behavioral responses to thermal and mechanical stimuli. Expression of sodium channels (Nav<sub>1.3 </sub>and Nav<sub>1.8</sub>) in injured dorsal root ganglia and microglial proliferation/activation in the spinal cord were measured on post-operative days 3 (POD<sub>3</sub>) and 7 (POD<sub>7</sub>).</p> <p>Results</p> <p>Group L presented abnormal behavioral responses indicative of mechanical allodynia and thermal hyperalgesia, exhibited up-regulation of Nav<sub>1.3 </sub>and down-regulation of Nav<sub>1.8</sub>, and showed increased microglial activation. Compared with ligation only, pretreatment with intrathecal lidocaine before nerve injury (Group P), as measured on POD<sub>3</sub>, palliated both mechanical allodynia (<it>p </it>< 0.01) and thermal hyperalgesia (<it>p </it>< 0.001), attenuated Nav<sub>1.3 </sub>up-regulation (<it>p </it>= 0.003), and mitigated spinal microglial activation (<it>p </it>= 0.026) by inhibiting phosphorylation (activation) of p38 MAP kinase (<it>p </it>= 0.034). p38 activation was also suppressed on POD<sub>7 </sub>(<it>p </it>= 0.002).</p> <p>Conclusions</p> <p>Intrathecal lidocaine prior to SNL blunts the response to noxious stimuli by attenuating Nav<sub>1.3 </sub>up-regulation and suppressing activation of spinal microglia. Although its effects are limited to 3 days, intrathecal lidocaine pretreatment can alleviate acute SNL-induced neuropathic pain.</p
    • ā€¦
    corecore